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Abstract. Game theory provides a paradigm through which we can
study the evolving communication and phenomena that occur via ratio-
nal agent interaction [11]. The Volunteer’s dilemma is a vastly studied
game throughout literature that models agents as cooperative, rather
than selfish, entities. In this work, we design a model framework and
explore the Volunteer’s dilemma with the goals of 1) modeling it as a
stochastic concurrent n-player game, 2) constructing properties to ver-
ify model correctness and reachability, 3) constructing strategy synthesis
graphs to understand how the game is iteratively stepped through most
optimally and, 4) analyzing a series of parameters to understand corre-
lations with expected local and global rewards over a finite time horizon.

1 Introduction

One-shot games, i.e. Prisoner’s Dilemma, can typically be modeled with a simple
payoff matrix. Players in the game choose a strategy and act concurrently and
independently of one another. Extensive form games model game theoretic sce-
narios with sequential mechanisms, in which a subsequent player acts once their
predecessor makes known their strategy and state transition. Iterated games, or
repeated games, are examples of extensive form games and study longer (pos-
sibly infinite) time horizons. Both methods have gleaned valuable insight into
behavioral economics and rational choice theory, and fuse many respective fields.
Stochastic games are argued to be the most reflective of real-world systems, as
they are governed by probabilistic dynamics that many situations incur. These
games are typically modeled as being extensive form, and arguably produce more
interesting results of long-run behavior. These dynamics have been studied in
games involving social welfare (public goods), robot coordination and invest-
ing/auction scenarios [3, 6, 8, 10].

Previous work [1] has analyzed a public good game as a concurrent stochas-
tic game. There, the authors evaluated optimal strategies under a fixed set of
parameters. We adopt the finite state methodology, i.e. each agent can choose to
share a discrete portion of their initial resources, but study a countering prob-
lem in a collective good game. We are interested in expressing the Volunteer’s
dilemma through Prism Model Checker, which allows for user flexibility of game
dynamics and thorough analysis of verification and reachability. To the best of
our knowledge, PRISM has not been used to study Volunteer’s Dilemma in the
form of an iterated game, i.e. a game that repeats and experiences soft resets
after each round.
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2 Background

2.1 The Volunteer’s dilemma

The Volunteer’s dilemma is a game played by multiple agents concurrently that
models a situation in which each agent has one of two options: 1) Cooperation:
An agent can make a small sacrifice for public good i.e. that benefits everyone,
2) Defect: An agent can wait and freeride, and hope someone else will eventually
cooperate. A typical payoff matrix for the Volunteer’s dilemma looks like this:

Table 1. Payoff matrix

at least one other cooperates all others defects

cooperate 0 0

defect 1 -10

The agents make the decisions independently of each other. The incentive for
an agent to freeride is greater than the incentive to volunteer. However, if no-one
volunteers then everyone loses. Conversely, if at least one person volunteers then
everyone receives benefit.

The Volunteer’s dilemma occurs in various natural scenarios. For example:
in a group of meerkats, some act as sentries to let everyone else know if there
are any predators nearby. In doing so, those become more vulnerable. It is also
important to understand group behaviors like voting behavior in democratic
elections. Let’s assume an election where a candidate has much more support
than all other candidates. The supporters of that candidate have little incentive
to go out and vote, since that candidate is predicted to win anyway. However, if
all of his supporters think in that way and do not vote, that candidate may end
up losing the election.

3 Design Overview

Concurrent stochastic multi-player games (CSGs) are an an extension to stochas-
tic games (SGs) popularized in the 1950s. SGs are generalizable to n-player
games and present a viable way to model group dynamics, in collaborative or
competitive games, where the environment changes given feedback from agents
in the system. Beginning from some state s ∈ S, immediate payoff, or reward,
is dependent on the actions taken by all agents in the system v ∈ V . Stochastic
multi-player games (SMGs) are turn-based and are governed by individual or
joint state transitions, where a player chooses from a set of probabilistic transi-
tions to determine the next state [5]. Formally, a CSG can be represented by a
tuple not dissimilar from a Markov Decision Process (MDP):

G = (N,S, ~S,A,∆, δ,AP,L)
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where: N is a finite set of players. S is a finite set of states. A is a finite set
of actions available to vi at time t. ∆ is an action assignment function. δ is a
probabilistic transition function. AP is a set of atomic propositions, and L is a
labeling function. In a CSG, similar to how a policy resolves nondeterminism in
an MDP, a strategy resolves choice [8]. Our focus is in games where this transition
occurs as a product of all agents simultaneously, hence the concurrence. As the
environment changes depending on these actions, the choice of a new state is also
influenced, and, in turn, expected future payoffs are affected. The design of our
CSG is detailed in this section. We use an extension to Probabilistic Symbolic
Model Checker (PRISM), PRISM Games [4, 5, 7], throughout experimentation.

3.1 Game Parameters

1. k: We refer to rounds of the finite length game as episodes. k ∈ {1, 2, 3, ..., kmax}
2. kmax: The maximum number of episodes specified as input into the environ-

ment.

3. V : The set of agents within a system. Let, n = |V |. In literature, the game
is typically played with n > 2. Here, we fix n = 3. We’ll be studying this
problem through the lens of a 3-player game.

4. rinit: The initial allocation of a resource. Each agent within the system is
initialized with rinit = 100 at each episode. Resources could be generalized
to be currency, votes or public goods, etc.

5. ci: The current resource allocation for agent vi at round k. ci is updated
throughout gameplay.

6. si: The number of shared resources for agent vi at round k. A player can
donate increments ({0, 0.5, 1.00}) of their procured resource allocation. si ≤
ci

7. rneeded: A specified parameter that dictates the number of resources needed
to ’win’ a round k in the game. In the traditional game, only a single vol-
unteer is needed. Here, we consider the effects of resource procurement over
finite-length runs of the game. E.g., rewards distributed at round k can be
used as ’donation’ at round k + 1. In literature, to reach a winning condi-
tion, we generally require donations from strictly less than the total number
of agents in the system. This holds here. We require rneeded < 100n. This
parameter is fixed round over round, i.e., it is not dynamically dependent on
the values of state variables ci.

3.2 Action Space

We discretize the allowable actions, i.e. resource donations, to reduce the search
space. We present the action space {a0, a50, a100} ∈ A below.
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Table 2. Volunteer’s Dilemma Action Space

Variable Name Definition

a0 Free Ride A player here chooses to contribute nothing to the
pot of rneeded. They are hopeful that total group
contribution still results in immediate payoff with-
out sacrificing any of their resource allocation.

a50 Partial Contribution A player taking this action will contribute b(0.5 ∗
ci)c resources.

a100 Total Contribution This action entails contribution in totality. All
available resources will be pushed toward rneeded.
An agent taking this action could be seen as altru-
istic, as they may perceive the good of the many
to outweigh the good of themselves.

3.3 Reward Structure

We present a simple reward structure as follows. At the kth round, all agents
starting in s0 are to concurrently choose an action. For a winning condition to be
met, the sum of total contributions from all agents Σn

i=1si must meet or exceed
the predefined threshold rneeded (Fig. 1).
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Fig. 1. Reward function given: rneeded = 200, n = |V |, f = 2. This plot shows donated
resources exceeded resources needed and reward (resources) in the 100s of units. When

Σ
n=|V |
i=1 si′ < rneeded, that round incurs no reward. When Σ

|V |
i=1si′ = rneeded, an optimal

joint strategy has been found. Because a single agent freerode in this instance, the
number of resources at the end of this round exceeds those of when the round began.
When Σ

n=|V |
i=1 si′ > rneeded, a winning condition has been met, but resources were ex-

pended that didn’t need to be. This figure shows the linearly decaying reward function,
and current resources at the kth round are found via the update function in eqn. 3.
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The immediate reward passed back to each agent subject to a winning con-
dition can be formulated as:

rki =
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)
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⌋)
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where the possible resources procured by a single player are constrained by
rmax. ci − si′ is the cost incurred by donating resources (initial resources at
the start of a round less the donated resources during a round). This can also
be thought of as an expenditure. f is a scaling factor to ensure that players
who donate aren’t penalized more than players that do not donate when a WIN
is achieved. si′ is the state that vi transitions to ck+1 = (si, ci|ai) given their
initial round state and the chosen action. Rewards gained at a time-step are re-
aggregated in ck+1 and are allowable donations in round k+1. In literature, par-
ticularly studies involving human psychology, confounding effects may diminish
the virtue of altruism in and of itself, as it could be done for ulterior motives [2].
We consider this here by ‘punishing’ over-donations. If Σn

i=1si > rneeded the im-
mediate reward for all agents at the kth round Rk decays linearly according to
the piecewise function noted above. This can be seen in Fig. 1.

4 Experiments and Results

The size of the state space is generally represented by |S| = n|A| for static
games. The winning conditions here are dynamically dependent on the state of
the game at a given time-step, There are more possible joint policies that result
in WIN/SAT as the game progresses and resources are procured via reward
feedback, and, as such, the state space grows exponentially over time. E.g., in this
first round of a game, assuming rinit = 1, there are only

(
n

rneeded

)
transitions that

induce a ‘perfect’ WIN, where no decay is met via over-donation. |S| increases as
ci −→ rmax. With a parameter set of {kmax = 4, rinit = 100, rneeded = 200, n =
3} the size of |S| grows according to |S| = 1.6978e3.0479k. We’ll constrain kmax
to be ≤ 4, as extrapolating this to 5 and 6 rounds leads to respectively ≈ 7mm
and ≈ 148mm possible states.

4.1 Model Correctness

We look at a mostly fixed parameter set: the number of agents n = 3, the
number of initial resources einit = 100, the threshold for resources rmax = 1000,
specified at the local level, and the maximum number of rounds iterated through
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as kmax = 4. To ensure that our model is working, we create properties based
on a temporal logic, rPATL, which combines PCTL and ATL [9].

With a nonzero probability, we want to ensure that after k rounds, it is
eventually possible for an agent to have ci ≥ einit, which would mean that
rewards were accrued during game-play and winning conditions were met. It
is not a formal requirement that all agents meet this condition individually,
however. If it is not met, the piecewise function in conjunction with the resource
update step ensures that cki < ck+1

i . If at any point during the game Σn
i=1ci <

rneeded it becomes impossible to satisfy this correctness property. Unfortunately,
PRISM Games does not support model checking on CTL operators. Ideally, we
would want to verify that there exists some state goal = Σn

i=1ci > rneeded across
k rounds, such that E[Fgood] evaluates to TRUE. Because this condition is
trivially satisfied via the initial state where n · eenit > rneeded, we look at a case
where 2 rneeded are required, which can be satisfied only after the first round of
the game.

goal = Σn
i=1ci > 2 ∗ rneeded

<< p1, p2, p3 >> P>=1.0 [F <= kmax + 1 “goal”]
(4)

In rPATL, the << C >> operator specifies a coalition of players [9]. Here,
we consider a cooperative game, where players are within a singular coalition
aimed at maximizing expected reward. The property in eqn. 4 asserts that there
exists a joint strategy, or a collection of policies for each agent, such that the
probability of reaching the goal state “goal” within kmax steps is at least 1.00.
This verifies to FALSE in the first round, and TRUE thereafter to kmax = 4,
suggesting a viable model for our purposes. We can also observe the probabilistic
reachability via the PRISM Games GUI for the noted property, detailed in Table
III. Intuitively, as the game progresses on, assuming round-wise SAT of the given
property, the number of possible states which result in SAT increase. This is due
to more resources being injected into the environment, resulting in more possible
combinations of donations which result in reward.

Table 3. VGD Probabilistic Reachability Analysis

Round States Y N M Y / (Y + N)

1 2 (1 init) 0 2 0 0%

2 55 (1 init) 6 48 1 11.1%

3 1162 (1 init) 141 1009 12 12.3%

4 27065 (1 init) 2724 8766 85 23.7%

4.2 Property Verification

Now that we’re sure our model is implemented correctly in PRISM, the next
step is to construct properties and verify them so we formulate a reachability
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analysis for the CSG. Recall “probabilistic reachability” as referred to in the
previous subsection and Table 3. For a probability-based property, the direct
result is a Boolean that indicates whether the property holds for at least one
state in the model. This corresponds to at least one Yes in the aforementioned
(Y, N, M) tuple and we emphasize that both outputs are situationally useful for
understanding the game. For a property defined by maximizing or minimizing
a variable/reward, the direct result is the max/min number while (Y, N, M)
has no reason to be recorded. Below we present some property templates we
experimented with in PRISM.

<< p1, p2, p3 >> R{“r1”}max =?{F k = kmax + 1} (5)

With our three players in the game, this property returns maximum reward value
r1 assigned to Player 1 when the game ends after kmax rounds. Here r1 and
done1 are interchangeable but r1 is able to be examined for all k = 1, ..., kmax.

<< p1 : p2, p3 >> max =?(R“done1”[Fk = kmax + 1]
+R“done23”[Fk = kmax + 1])

(6)

For this property we have Player 1 aligned against Players 2 and 3 for a total
of two coalitions. With done23 = c2 + c3 − 2 · einit, the returned value is the
maximum when these two coalitions are separately trying to maximize reward.

<< p1, p2, p3 >> P≥1[F c1 + c2 + c3 < 200] (7)

Here we present the first probability-based property. The direct result obtained
is 1 if there must always exist a reachable state where the sum of player resources
is below 200. In the PRISM log we can examine (Y,N,M) to see the fraction of
states where this inequality holds.

<< p1, p2, p3 >> Pmax =?[F <= kmax + 1c1 < c2] (8)

This property returns the maximum probability that player 2 has more resources
than player 1 after kmax rounds. This is expected to be 1 since our CSG doesn’t
impose limitations on how player resources compare to each other. Similarly we
expect the minimum probability to be zero, and we can obtain a fraction of
states that satisfy this from the PRISM log.

4.3 Reward Maximization

We subject the environment to a property involving global reward maximiza-
tion: << p1, p2, p3 >> R“done123”max =?[Fk = kmax + 1], where the label
R“done123” specifies the total resources accrued after round k by all agents in
the system. The results can be seen in Fig. 2. Interestingly, we see that when
players within the system are instantiated with a lesser initial resource alloca-
tion, the maximum possible reward at the end of round 4 is greater than other
cases. We believe this relationship to be paradoxical. We can view the slope of
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Fig. 2. An iterated run through the system with variable initial resources. The y-
axis represents the total, aggregate group reward through time k. The different lines
represent varying initial state conditions.

the reward plots as an indicator, where rinit < 200 produces greater rates of
change and lesser stabilization as the rounds progress. Because the update step
of current resource allocation takes into account expenditures, this leads us to
believe that freeriding is a more popular choice of action when initial resources
are more scarce. We also note that an optimal strategy is not reached round
over round, as the aggregate reward falls below the ceiling of possible reward
300n. We intend to explore theoretical analysis concerning agent participation
in pursuit of cooperative welfare.

5 Limitations and Future Work

Reward Properties: Although it’s simple enough to formulate properties involv-
ing a max or min over linear combinations of rewards, PRISM doesn’t support
the usage of probability bounds (max/min) or inequalities (P >= p) for such
formulas. Luckily in this game all rewards are of the form ci− einit with each ci
a player resource variable. Therefore this became a non-issue as we realized all
reward formulas can be substituted if necessary.

Limitations in Multi-Partition Property Analysis: We note that PRISM’s
support for CSGs is in beta-testing, and additionally the final release may feature
limitations to prevent ‘obvious’ computational intractability. With that in mind,
a challenge we faced was the inability to create more than two partitions for
properties i.e maximizing sum of player reward. Of course we are still allowed
to feature more than two players in a property. But ultimately we lack the
capability to fully analyze this game when each player is in a different coalition,
and thus we work around this by extracting as much as we can from 1/2-coalition
properties.

Strategy Graphs: Perhaps the most interesting analysis involves the strategy
graphs generated for specific properties. Because our state space grows exponen-
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Fig. 3. Strategy Graphs can be used to find an optimal controller given a property.
Here, we consider<< p1 : p2, p3 >> R“r1”max =?[Fk = kmax+1] under the specified
parameter set noted above. The graphs can be read via [k, c1, s1, c2, s2, c3, s3], where
branching is determined by the actions taken concurrently by all agents in the system.
Some interesting patterns emerge when looking at global reward maximization against
optimal strategies. On the left, results are shown for a single round. From the init state
of the game, the optimal strategy is for two players to donate in totality, and for one
player to partially donate. On the right, we extend this to round 2. Here, global reward
maximization is achieved as a result of full participation via partial contribution. In
both cases, no agent within the system freerides.

tially due to the mechanisms involving game-play, this is exceedingly difficult.
For instance, we can look at a strategy graph for one round over three play-
ers and the strategy synthesis is easy to conceptualize. As the game progresses,
it becomes computational taxing to conduct value iteration with an exploding
state space.

6 Conclusion

We have presented a viable, working model for studying optimal and sub-optimal
behaviors in multi-agent systems under probabilistic dynamics. We have also in-
troduced and verified properties to check the correctness of our holistic approach,
as well as having analyzed our reward mechanism under various conditions. Our
analysis focused mainly on a single parameter set where a number of variables
were fixed. Our model was presented as a concurrent stochastic game in which
players were guided to cooperate with one another, but it is entirely possible
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that agents in a real-world system do not act cooperatively in the presence of
such a dilemma. Perhaps, in the case of a democratic voting schema, a coalition
of agents gains intrinsic satisfaction from minimizing the collective reward of an
opposing coalition. This could be introduced by partitioning coalitions in the
form of subgraphs in a graphical dynamic system. There, it would be of inter-
est to explore such games under a combative approach where coalitions would
oppose one another.
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