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MODEL EXPLAINABILITY IN 

PREDICTIVE ANALYTICS: 

A FURTHER INVESTIGATION 

 
Abstract 

 
In our exploratory investigation into a strategy for 

prediction model explainability, we uncovered 

inconsistencies across the various techniques and 

prediction methods, as well as anomalies between the 

actual and predicted values in some forecasting 

scenarios.  This has the undesirable effect of casting 

doubt upon the efficacy of existing explainability 

approaches.  To address these problems, we undertake 

here detailed “drilldown” analyses to gauge more 

precisely the effects of sample size and “what if” 

perturbations on prediction results.  In combination 

with using a second academic data-set, we obtained 

much more encouraging results with respect to the 

uniformity of explainability effects.  This has 

motivated us in our quest to generate “reference 

narratives” for explaining models to the end user 

community of organizations and their clients. 

 

1. Introduction 

 
     A long-standing problem in predictive analytics has 

been the disconnect between modelers (statisticians, 

mathematicians and data scientists) at the model 

development stage and end-users at the organizational 

and decision-maker levels for whom the models are 

ostensibly built in the first place.  The latter 

community typically does not have the analytical 

background necessary for a full comprehension of the 

resulting model artifacts whereas the former 

community often lacks the requisite knowledge of the 

problem domain driving the requirements of decision-

makers.  This “cultural divide” too frequently has the 

undesirable consequence of diminishing the utility of 

modeling to its intended audience. 

    This communication problem has migrated into the 

arena of machine learning (ML) and artificial 

intelligence (AI) in recent times, giving rise to the need 

for and subsequent emergence of explainable AI 

(XAI).  XAI has arisen from growing discontent with 

“black box” models, often in the form of neural 

networks and other emergent, dynamic models (e.g., 

agent-based simulation, genetic algorithms) that 

generate outcomes lacking in transparency.  

Applications such as facial recognition have met with 

stern resistance as, too often, mistaken identifications 

have led to unnecessary and serious disruption in 

individuals’ lives.  As another example, pre-existing 

bias in historic data-sets used for building ML 

algorithms (MLAs) has resulted in some people being 

denied loans because of their race and/or gender.  This 

is a very sensitive issue for companies for whom the 

public perception of policy fairness and impartiality is 

critical to their business and well-being. 

    A recent well-received book by John Kay and 

Mervyn King, “Radical Uncertainty: Decision-

Making Beyond the Numbers” [4] highlight similar 

problems for economic models.  The authors suggest 

a need for “reference narratives” which are effectively 

stories that can be marshaled to address the overriding 

objective of unraveling “what’s going on here?”  We 

adopt this perspective as our long-term strategy for 

model explainability. 

    We have addressed this problem in a preliminary 

fashion exploring model transparency within the 

circumscribed context of predictive analytics [5].  Our 

objective is to expand upon our initial analyses with an 

eye towards the eventual reconciliation of the two 

stakeholder communities mentioned above.  Model 

transparency is likely to become a growing area of 

interest as ML/AI models continue to develop, and 

organizations and users will continue to demand 

improved accountability.  Translating mathematical 

and data science expertise into decision-making 

expertise remains a significant obstacle in gaining 

organizational acceptance of model artifacts. We 

believe that advances in model explainability and 

interpretation are essential to bridge this gap.  

 

2. Previous Work and Methodology 
 

    Our objective here is to expand upon our 

preliminary investigation of explainability techniques, 

detailed in [5]. In that work, we ran four different 

prediction models and then compared the following 

explainability techniques for each model: Local 

Interpretable Model Explanation (LIME [9]), SHAP 

(SHapley Additive exPlanations [6,7]), GAM 

(General Attribute Model [3]), and an SKLearn neural 

net [8], all applied to a static Lending Club loan 

applications training data-set, consisting of 80,000 

observations (Table 1).  The intent of our paper was to 

examine the consistency of the feature sets across the 

four techniques and to assess the comparability of 

these approaches across all four of the different 

models, both in static and dynamic (i.e., predictive) 

modes.    

    Within the context of the loan application data-set, 

we discovered that the SHAP technique to be the most 

robust technique for explainability.  SHAP and GAM 

were relatively consistent with respect to identifying 

the operative feature sets in the training data-set but 

the neural networks did not track as well.  We further 



discovered that in the dynamic case involving actual 

prediction, the forecasts did not always align with the 

static results as well as desired.  This has led us to drill 

down and sharpen our analysis as we describe below. 

    Our preliminary investigation showed 

inconsistencies in feature importance across the 

different explainability measures, and equally 

disturbing, when comparing actual predictions with 

the static expectations.  In this work, we examine the 

dynamic, predictive case by performing perturbation 

analyses on the features which appear to be most 

influential in model explainability.  In an ideal world, 

these perturbation-based predictive cases should track 

the corresponding static cases. 

    Because of the computation costs of Shapley 

estimators, most Shapley examples have relatively 

small sample sizes.  In that context, we also want to 

look at the effect of increased sample size on the 

Shapley estimators to see how well they hold up.    

    Our approach then is as follows: 

• We look at the sensitivity of predictions to 

sample size, i.e. as the sample size increases, 

do the prediction-to-expected differences 

remain, and if so, to what degree?  Using 

SHAP estimators, we show the effect of 

straight sample size on the feature 

importance dimension of features identified 

as major influencers.  We expect ideally that 

sample size would not have a large impact on 

feature importance measures. 

• As a way to minimize sampling bias, we 

stratify the overall sample into randomly 

selected equal-sized Subsamples to test the 

variance of the predictions across these 

Subsamples.  Again, we would like to see the 

Subsample results match up with the overall 

sample results. 

• We examine the dynamic, predictive case by 

performing perturbation analyses on the 

features which appear to be most influential 

in model explainability.  We perturb selected 

features over the range -0.5 to 0.5 in 

increments of 0.1 for each of the segments. 

Again we expect these perturbation-based 

predictive cases to track the corresponding 

static cases. 

• To verify the results are not ‘data-set’ 

dependent, we then recreate these same 

analyses on a second, different financial data-

set.   

    In this analysis, in addition to the changes discussed 

above, we have modified the previous experiment as 

follows: 

• In our previous work, we experienced some 

leakage from the data pipeline which we have 

largely eliminated.  For example, we 

considered features that were explicitly tied 

to the active status of a loan. In a production 

environment where a model would yield a 

score determining viability and efficacy of a 

consumer to fulfill the basic requirements of 

the loan, these features would not be 

available, which is analogous to a user cold 

start problem prevalent in recommender 

system tasks. This is task-dependent, 

however, as dynamic loan evaluation models 

could be used throughout a loan’s duration to 

signal potential changes in behavior towards 

delinquent status.   

• We focus solely upon the SHAP model 

explainability in the current analysis for the 

following reasons: 

a. The four techniques we examined in 

[5] did not reveal consistent results 

across the board.  We have thus 

decided to focus upon only a single 

technique, namely Shapley 

Explanations, which [7] have shown 

to be a more widely used and 

general explainability strategy.   

b. SHAP provides convenient 

graphical displays for feature 

importance which are readily 

understandable to end-users as well 

as data scientists as we show in our 

analyses. 

c. A disadvantage of SHAP is the 

costly computational time as the 

sample size increases. 

• We consider only 3 prediction techniques 

(GBC, RF, Logit), discarding the neural net 

(NN) methodology Deep learning has 

experienced tremendous industrial adoption 

this decade, but often require large amounts 

of data to approximate a functional mapping 

from input to output space. The largest 

sample we consider here is 80k, and we were 

unable to achieve performance on evaluation 

metrics comparable to generalized linear 

models or tree-based algorithms.   With a 

moderately extensive grid search of both 

hyperparameters and neural network 

architecture, the ‘best’ model on any Lending 

Club class-balanced sample was only 

moderately better than a random baseline 

model, while other considered algorithms 

yielded a size-invariant holdout accuracy 

greater than 80%. 

 



3. Data-Sets1 

    We analyze two data-sets:  

1. Lending Club Loan Application consisting of 

active and past loans.  Those completed loans 

that have been fully paid or have no existing 

derogatory marks are classified as 'good 

loans' whereas 'bad loans' are instances where 

an individual has either defaulted or is 

currently delinquent. What we want to 

predict is whether an individual loan is 

“good” (GoodLoan), i.e. it does not have 

associated factors such as payment defaults, 

late payments, high balances, etc which 

would constitute being a BadLoan.  This 

data-set was used in our initial investigation 

and contains 80K observations, 5 continuous 

variables and 16 categorical variables.   

2. Census Income from 1994 containing 

demographic variables from which we want to 

predict whether income for an individual exceeds 

$50K/year.  This dataset is a popular data-set 

frequently used in academic papers for assessing 

MLP (multilayer perceptron) effectiveness.  It 

contains ~30K observations, 6 continuous 

variables and 8 categorical variables. 

    For each data-set, we perform these different 

analyses: 

• Feature importance; we compare feature 

importance from the entire sample (80K for 

Lending Club and 30K for Census Income) to 

Subsamples (20K for Lending Club and 10K 

for Census Income) 

• Using perturbation analysis, assess the model 

operation in dynamic, prediction mode by 

perturbing the major features identified from 

-50% to 50% by increments of 10% to see 

what effects this has upon explainability.  

The perturbation process varies slightly 

depending on whether the feature is 

continuous or categorical. As with Feature 

Importance, we consider the impact of 

sampling on the perturbation process.   

• Sample Size Analysis.  We considered the 

impact of sample size, but report these only 

for Lending Club.  (The results are similar to 

the Subsample analysis.)  

 

4. Lending Club Loan Application 

 
4.1 Explainability Comparisons 

 
1Reference links to data-sets: 

- Lending Club Loan Applications: 
https://www.kaggle.com/wendykan/lending-club-loan-

data#LCDataDictionary.xlsx; 

 
     In our previous paper, we demonstrated that the 

Shapley estimates of feature importance were 

relatively consistent (across estimators, but that the 

sensitivity in predictions (via perturbation analysis) 

varies quite widely from expectations based on the 

predicted feature importance.  In particular, we 

observed insensitive response functions for all the 

estimators (except logit).  To examine this discrepancy 

further, we perform the sample size and perturbation 

analyses as described above. We construct for each 

feature a cardinal metric, namely the Shapley Value 

relevant to the scenario being analyzed.  This enables 

us to represent feature sets for a scenario in a single 

graph for easier comparison as we show below. 

 

4.2 Sample Size Analysis 

    Figure 1 compares the feature importance rank from 

the SHAP scores of the five most important features 

using samples ranging from 10K to 80K.   

 

 

- Census Income: http://archive.ics.uci.edu/ml/data-

sets/Census+Income 
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Figure 1. Top5 Feature Importance by Sample Size by 
Prediction Technique  
 

    With the exception of the smallest sample (10K) 

and the Loan Grade binary features in GBC, we see a 

high-degree of similarity in the feature importance.  

Given the similarities between the sample size analysis 

and the Subsample analysis, we will end the discussion 

of sample size analysis here to save space. 

4.3 Subsample Analysis 

     Figure 2 compares the feature importance rank 

from the SHAP scores of the five most important 

features (using the entire 80K sample) to the feature 

ranks of each of these features for the four 20K 

samples (the sample size we used in the previous 

paper).   

 

 

 

 

Figure 2. Top5 Feature Importance by Subsample by 
Prediction Technique  
 

    The five most important features from the overall 

sample is utilized.  Looking at the RF (random forest) 

results as an example, we see that int_rate is the most 

important feature for each of the Subsamples.  Loan 

Grade B is the second most important feature in two 

of the Subsamples, and is the third most-important 

feature in the other two Subsamples.   

    On the plus side, all estimation techniques and 

samples agree on int_rate as the most important 

feature.  There is less uniformity as feature rank falls, 

particularly if we consider the Top10 (not shown here) 

rather than Top5 feature sets.  For example, for the 

random forests (RF) technique, tot_cur_bal is the 4th 

most important feature for the entire 80K training set, 

but only 6th - 10th for the four 20K samples.  Overall, 

there is less disparity between the models than in our 

previous analysis.  We suspect that this is related, at 

least in part, to the improved data pipeline. 

4.4 Perturbation Analysis  

    There are two cases to consider in the perturbation 

analysis.  For continuous features, we simply increase 

(or decrease) the feature value by a fixed percentage, 

e.g., by (say) 50%. In the categorical case, we “turn 

on” features that were previously “off”.  This re-

coding of binary features also requires that other 

binary features are changed at the same time. 
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    In the continuous case, we run the model for 10 

different scenarios for each of the three different 

prediction techniques, perturbing the variable in 

question in increments of .1 ranging from -.5 to .5 to 

see what, if any, effects, this has upon feature 

importance (Figure 2).  Although we have run the 

perturbations for the Top10 features in terms of 

importance, we only show the two examples below for 

ease and compactness of representation.  Note that the 

y-axes in all cases below represent the prediction 

probability of a ‘good loan’.  For a perturbation value 

of 1, the prediction is the sample enumeration estimate 

of the predicted probability.  For a perturbation value 

of 1.5, the prediction is for the case where the feature 

of interest, Interest Rate in the case of Figure 3A, is 

increased by 50%.  

    Figure 3 compares predictions for two Features 

across perturbation values for the 3 estimation 

techniques and the overall 80K sample to the four 20K 

Subsamples.   

 

 

 

 

Figure 3A. Perturbations for Interest Rate by 
Prediction Technique by Subsample 
 

    In Figure 3A, we see ‘universal agreement’ in Logit: 

the 5 prediction response functions are essentially 

identical.  For Random Forest (RF), we likewise see 

similar results (more similarity for increases in the 

int_rate than for decreases).  GBC shows the largest 

differences—especially on the ‘increase’ in the 

interest rate.  Note also that the GBC response 

functions generally show slight sign reversals for 

slight increases from the base (up to a 20% increase 

for some samples).  
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Figure 3B. Perturbations for Install by Prediction 

Technique by Subsample 

    In Figure 3B for install, there is much less 

agreement---both between the samples and between 

the estimation techniques.  For Random Forest (RF), 

the Subsamples are responsive than is the overall 

sample.  For GBC, the response functions are all ‘flat’, 

but the overall sample is separated from the 

Subsamples.  For logit, we the see the overall sample 

is fairly sensitive to changes in install, but the 

Subsamples are insensitive (or flat). 

    Figure 3A is more like we might have have hoped 

in the sense that we similar response functions for all 

estimators), whereas Figure 3B is more similar to our 

previous analysis that showed large discrepancies 

between predicted and actual feature importance. 

    Figure 3C summarizes the response function (for 

the entire 80K sample), across the 3 estimation 

techniques for features Interest Rate and Install.  The 

most important feature, Interest Rate, has similar 

response across the three techniques---though there 

are slight ‘sign reversals’ in GBC ‘outside’ the (0.9, 

1.1) interval. 

 

 

 

 
 

Figure 3C. Perturbation of Interest Rate and Install 
Features across Prediction Techniques for 80K 
Sample  
 

    Figure 3C highlights the broad similarities for the 

response functions between estimation techniques for 

the most important feature (int_rate).  There is 

basically no response for GBC and RF, while logit 

shows some response to installation (8th most 

important feature for RF, 2nd most important feature 

for GBC and 12th most important feature for logit). 

    For the categorical perturbation, we change the 

number of observations “turned-on” by steps of .2 

(from 0 to 1).  That is, a step of .2 turns on 20% more 

observations (than are on in the data-set); 1 then means 

that we have doubled the proportion of “on’s” 

compared to the actual values. 
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Figure 4. Perturbation of Loan Grade A by 

Subsample. 

 

    Figure 4 details the perturbation for the categorical 

feature Loan Grade A (3rd most important feature for 

RF and GBC and the 9th most important feature for 

logit). We see that the response functions for RF and 

logit behave similarly.  The surprise here is GBC—

both the flatness (given its feature importance) and the 

fact that the entire sample is so ‘different’ from the 

Subsamples (in terms of level). 

 

 

 

Figure 5. Perturbation Results (2020 vs 2021). 

    Figure 5 compares the current results to our results 

from the previous paper for int_rate and Loan Grade 

A.  We see that the newer models generally behave 

closer to expectations in the sense that feature 

importance better correlates with the response 

functions and there are fewer anomalies in the form of  

sign-reversals. 

5. Census Income 

5.1 Subsample Analysis  

    Figure 6 below compares the feature importance 

rank from the SHAP scores of the five most important 

features (using the entire 30K sample) to the feature 

ranks of each of these features for the three 10K 

samples.  We see that all estimation techniques find 

Married to be  the most important feature.   
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Interestingly, logit shows the most disparity between 

the entire sample and the Subsamples; though the 

results are more uniform in this case.   

 

 

 

Figure 6. Feature Importance by Subsample Size by 
Prediction Technique for Census Income Data-Set 
     

5.2 Perturbation Analysis: Continuous 

Features 

    As before in the continuous feature case, we 

exercise the model for 10 different scenarios for each 

of the three different prediction techniques, perturbing 

the variable in question in increments of .1 ranging 

from -.5 to .5 to see what, if any, effects, this has upon 

feature importance.  Figures 7 and 8 below  compare 

predictions for two selected features across 

perturbation values for the 3 estimation techniques and 

the overall 30K sample as compared to the three 10K 

Subsamples.   

 

 

 

Figure 7.  Age Feature (continuous) by Prediction 
Technique by Subsample for Credit Income Data-
Set 
 

    In Figure 7, we see ‘nearly-uniform agreement in 

the response function, both across estimation 

techniques and samples. For RF, response function is 

definitely flatter for increases than decreases.  For 

GBC, the response function once again demonstrates 

modest sign-reversals (for some increases).  Unlike 

Figures 2A and 2B, the response function for the entire 

samples falls within the Subsamples.  This may be 

partially explained by the differences in the data-sets; 

demographics and income are less heterogenous 

across households than are good loans and financial 

features. 
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Figure 8.  Hours-per-week Continuous Feature by 
Prediction Technique by Subsample 
 
    Figure 8 like Figure 7 shows fewer differences in 

response across the Subsamples and estimation 

techniques, a further encouraging sign. 

 

5.3 Perturbation Analysis: Categorical 

Features 
 

    Figure 9 below details the perturbation for the 

categorical feature Never Married (9th most important 

feature for RF,  15th for GBC and the 6th most 

important feature for logit).  We see ‘nearly-uniform’ 

agreement in the response functions for all estimation 

techniques.  Once again, the Census dataset appears to 

be better behaved; perhaps it is more accurate to say 

that the response function (in the perturbation 

analysis) conform better to expectations (based on the 

SHAP feature importance rankings/scores). 

 

 

 

 

Figure 9.  Marital Status Categorical Feature by 
Prediction Technique by Subsample 
 

6. Summary and Conclusions 

    Our original intent was to utilize an actual firm-

specific finance data-set where we could look 

carefully at the intersection of feature-importance and 

regulatory constraints.  Unfortunately, for 

circumstances beyond our control, mainly the COVID 

virus, we were unable to get access to a dataset in a 

timely manner.  As a result, we utilized another public 

dataset for purposes of comparison.   

    We generally found similar results across data-sets, 

although the Census data-set did more closely align 
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with expectations.  Our Subsample analyses seemed to 

dispel concerns about sampling bias, and the disparity 

between static and dynamic forecasting scenarios was 

much less pronounced than our initial analyses which 

is an encouraging development.  Thus, we believe we 

are on the right track to making model explainability a 

realistic and valuable tool in the overall decision-

making landscape. 

    Our eventual goal is to develop a methodology 

which facilitates the generation of “reference 

narratives” as a way to answer the question “what’s 

going on here?” in any particular model and decision-

making setting.  “Reference narratives” are essentially 

stories we can tell to end users to help explain the data 

and models that utilize the data [4]. In short, we are 

looking for ways to bridge the gap between the 

mathematician/ data scientist/statistician and 

organizational model users. 

    Our next step in this quest is to apply what we have 

learned from our analyses here to utilize an actual 

finance data-set that is the basis of a firm’s decisions 

in a regulatory environment.  This will allow us to look 

more closely into the impacts of regulation on the use 

of feature importance.  We also want to look into 

potential metrics for the ‘differences’ in feature 

importance between estimation techniques, e.g., 

pairwise distance or similarity. 

 

7. References 

 
[1] Friedman, J.H.  Greedy function approximation: A 

gradient boosting machine. The Annals of Statistics, 2001, 

Vol. 29, No. 5, 1189–1232. 

[2] Ho, T.K. Random decision forests. Proceedings of the 

3rd International Conference on Document Analysis and 

Recognition, Montreal, QC, 14–16 August 1995. pp. 278–

282. 

[3] Ibrahim, M., Louie, M., Modarres, C., Paisley, J.  Global 

explanations of neural networks: Mapping the landscape of 

predictions. AAAI/ACM Conference on Artificial 

Intelligence, Ethics and Society, Honolulu, HI, Jan 27-28, 

2019.  arXiv:1902.02384v1  

[4] Kay, J. and King, M.  Radical Uncertainty: Decision-

Making Beyond the Numbers. W.W. Norton and Company, 

2020. 

[5] Kridel, D., Dineen, J., Castillo, D., Dolk, D. Model 

interpretation and explainability: Towards creating 

transparency in prediction models.  Proceedings of HICSS-

53, 2019. 

[6] Lipovetsky, S. and Conklin, M. Analysis of regression in 

game theory approach. In: Applied Stochastic Models in 

Business and Industry 17.4 (2001), pp. 319–330. 

[7]  Lundberg and Lee.  A unified approach to interpreting 

model predictions.  31st Conference on Neural Information 

Processing Systems (NIPS 2017), Long Beach, CA, USA. 

[8] Reagen, B., Whatmough, P., Adolf, R., Rama, S., Lee, 

H., Lee, Hernández-Lobato, H., Wei, G-Y., Brooks, D. 

Minerva: Enabling low-power, highly-accurate deep neural 

network accelerators.  ISCA 2016. 

[9] Ribeiro, M., Singh, S. and Guestrin, C. Model-agnostic 

interpretability of machine learning. In Human 

Interpretability in Machine Learning workshop, ICML ’16, 

2016. 

[10] Train, K. Discrete Choice Methods with Simulation. 

Cambridge University Press 1st  ed., 2003 2nd edition, 2009. 

 

View publication statsView publication stats

https://arxiv.org/abs/1902.02384v1
https://www.researchgate.net/publication/350567923

